Dadda multiplier

The Dadda multiplier is a hardware multiplier design invented by computer scientist Luigi Dadda in 1965. It is similar to the Wallace multiplier, but it is slightly faster (for all operand sizes) and requires fewer gates (for all but the smallest operand sizes).[1]

In fact, Dadda and Wallace multipliers have the same 3 steps:

  1. Multiply (that is - AND) each bit of one of the arguments, by each bit of the other, yielding n^2 results. Depending on position of the multiplied bits, the wires carry different weights, for example wire of bit carrying result of a_2 b_3 is 32.
  2. Reduce the number of partial products to two layers of full and half adders.
  3. Group the wires in two numbers, and add them with a conventional adder.

However, unlike Wallace multipliers that reduce as much as possible on each layer, Dadda multipliers do as few reductions as possible. Because of this, Dadda multipliers have less expensive reduction phase, but the numbers may be a few bits longer, thus requiring slightly bigger adders.

To achieve this, the structure of the second step is governed by slightly more complex rules than in the Wallace tree. As in the Wallace tree, a new layer is added if any weight is carried by 3 or more wires. The reduction rules however are as follows:

This step does only as many adds as necessary, so that the number of output weights stays close to a multiple of 3, which is the ideal number of weights when using full adders as 3:2 compressors.

However, when a layer carries at most 3 input wires for any weight, that layer will be the last one. In this case, the Dadda tree will use half adder more aggressively (but still not as much as in a Wallace multiplier), to ensure that there are only two outputs for any weight. Then, the second rule above changes as follows:

Contents

Algorithm example

This section explains the Dadda dot-diagram reduction example

First bank
Columns 0-5 don't need any adders since they all have <= 6 bits
Column 6 needs 1 HA (7 > 6) which reduces it to 6 bits and passes one carry bit to column 7.
Column 7 can use a FA since it has 8 bits which would reduce the column to 6 bits, but since column 6 is passing in a carry bit, it needs one more HA to bring the total to 6 bits
Column 8 needs a FA and a HA since it's getting 2 carry bits from column 7's adders.
Column 9 only needs one FA
Columns 10-14 do not need any adders since any carry bits from the previous columns don't result in a total greater than 6.
Second bank
The next bank's dj = 4
Columns 0-3 don't need any adders since they have <=4 bits
Column 4 needs a HA, (5 > 4)
Column 5 needs a FA and a HA due to the carry bit
Columns 6-10 need two FA since they all have 2 carry bits coming from the previous stage
Column 11 only needs 1 FA to get to 4 bits after the carry bits come in
Columns 12-14 don't need any adders since they all have < 4 bits
3rd bank
The next bank's dj = 3
Columns 0-2 don't need any adders since they have <=3 bits
Column 3 only needs one HA to get to 3 bits
Column 4-12 need a FA since they all have one carry-in bit coming in from the previous column
Columns 13-14 don't need any adders since they have < 3 bits
4th bank
The next bank's dj = 2
Columns 0-1 don't need any adders since they have <=2 bits
Column 2 only needs one HA to get to 2 bits
Column 3-13 need a FA since they all have one carry-in bit coming in from the previous column
Column 14 doesn't need an adder (1 < 2)
5th bank
At this point, everything is reduced to two bits and the resultant can be calculated from a 14 bit adder.

Example

n=4, multiplying a_3a_2a_1a_0 by b_3b_2b_1b_0:

  1. Reduction layer 1:
    • Pass the only weight-1 wire through, output: 1 weight-1 wire
    • Pass the two weight-2 wires through, outputs: 2 weight-2 wires
    • Add a full adder for weight 4, outputs: 1 weight-4 wire, 1 weight-8 wire
    • Add a full adder for weight 8, and pass the remaining wire through, outputs: 2 weight-8 wires, 1 weight-16 wire
    • Add a full adder for weight 16, outputs: 1 weight-16 wire, 1 weight-32 wire
    • Pass the two weight-32 wires through, outputs: 2 weight-32 wires
    • Pass the only weight-64 wire through, output: 1 weight-64 wire
  2. Wires at the output of reduction layer 1:
    • weight 1 - 1
    • weight 2 - 2
    • weight 4 - 1
    • weight 8 - 3
    • weight 16 - 2
    • weight 32 - 3
    • weight 64 - 1
  3. Reduction layer 2: this layer will be the last because any weight has at most three input wires.
    • Weights 1, 2, 4, 64 pass through.
    • Add a full adder for weight 8, outputs: 1 weight-8 wire, 1 weight-16 wire
    • Add a half adder for weight 16, outputs: 1 weight-16 wire, 1 weight-32 wire
      Weight 8's full adder has already produced one weight-16 output wire. By using a half adder for the two weight-16 input wires, the Dadda's tree ensures that the last layer has only two output wires for any weight.
    • Add a full adder for weight 32, outputs: 1 weight-32 wire, 1 weight-64 wire
  4. Outputs:
    • weight 1 - 1
    • weight 2 - 2
    • weight 4 - 1
    • weight 8 - 1
    • weight 16 - 2
    • weight 32 - 2
    • weight 64 - 2

Compared to a Wallace tree, which requires 10 between full adders and half adders, the reduction phase of the Dadda multiplier has the same delay but requires only six. On the other hand, the final adder has 6-bit inputs (weights 2 to 64), rather than 5-bit (weights 8 to 128) as in Wallace tree......

See also

References